Dynamics of IP traffic

Author:

Feldmann Anja1,Gilbert Anna C.1,Huang Polly2,Willinger Walter1

Affiliation:

1. AT&T Labs-Research, Florham Park, NJ

2. USC/ISI, Los Angeles, CA

Abstract

Using the ns-2 -simulator to experiment with different aspects of user- or session-behaviors and network configurations and focusing on the qualitative aspects of a wavelet-based scaling analysis, we present a systematic investigation into how and why variability and feedback-control contribute to the intriguing scaling properties observed in actual Internet traces (as our benchmark data, we use measured Internet traffic from an ISP). We illustrate how variability of both user aspects and network environments (i) causes self-similar scaling behavior over large time scales, (ii) determines a more or less pronounced change in scaling behavior around a specific time scale, and (iii) sets the stage for the emergence of surprisingly rich scaling dynamics over small time scales; i.e., multifractal scaling. Moreover, our scaling analyses indicate whether or not open-loop controls such as UDP or closed-loop controls such as TCP impact the local or small-scale behavior of the traffic and how they contribute to the observed multifractal nature of measured Internet traffic. In fact, our findings suggest an initial physical explanation for why measured Internet traffic over small time scales is highly complex and suggest novel ways for detecting and identifying, for example, performance bottlenecks.This paper focuses on the qualitative aspects of a wavelet-based scaling analysis rather than on the quantitative use for which it was originally designed. We demonstrate how the presented techniques can be used for analyzing a wide range of different kinds of network-related measurements in ways that were not previously feasible. We show that scaling analysis has the ability to extract relevant information about the time-scale dynamics of Internet traffic, thereby, we hope, making these techniques available to a larger segment of the networking research community.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3