On-line analysis of the TCP acknowledgment delay problem

Author:

Dooly Daniel R.1,Goldman Sally A.1,Scott Stephen D.2

Affiliation:

1. Department of Computer Science, Washington, University in St. Louis, Campus Box 1045 One Brookings Drive, St. Louis, MO

2. Department of Computer Science & Engineering, University of Nebraska, Ferguson 115, Lincoln, NE

Abstract

We study an on-line problem that is motivated by the networking problem of dynamically adjusting of acknowledgments in the Transmission Control Protocol (TCP). We provide a theoretical model for this problem in which the goal is to send acks at a time that minimize a linear combination of the cost for the number of acknowledgments sent and the cost for the additional latency introduced by delaying acknowledgments. To study the usefulness of applying packet arrival time prediction to this problem, we assume there is an oracle that provides the algorithm with the times of the next L arrivals, for some L ≥ 0. We give two different objective functions for measuring the cost of a solution, each with its own measure of latency cost. For each objective function we first give an O(n 2 ) -time dynamic programming algorithm for optimally solving the off-line problem. Then we describe an on-line algorithm that greedily acknowledges exactly when the cost for an acknowledgment is less than the latency cost incurred by not acknowledging. We show that for this algorithm there is a sequence of n packet arrivals for which it is Ω (***)-competitive for the first objective function, 2-competitive for the second function for L = 0, and 1-competitivefor the second function for L = 1. Next we present a second on-line algorithm which is a slight modification of the first, and we prove that it is 2-competitive for both objective functions for all L . We also give lower bounds on the competitive ratio for any deterministic on-line algorithm. These results show that for each objective function, at least one of our algorithms is optimal. Finally, we give some initial empirical results using arrival sequences from real network traffic where we compare the two methods used in TCP for acknowledgment delay with our two on-line algorithms. In all cases we examine performance with L = 0 and L = 1.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Service with Delay;ACM Transactions on Algorithms;2021-08

2. On bin packing with clustering and bin packing with delays;Discrete Optimization;2021-08

3. New results on multi-level aggregation;Theoretical Computer Science;2021-03

4. Online Algorithms for Multilevel Aggregation;Operations Research;2020-01

5. The Online Set Aggregation Problem;LATIN 2018: Theoretical Informatics;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3