A recursive formulation of Cholesky factorization of a matrix in packed storage

Author:

Andersen Bjarne Stig1,Waśniewski Jerzy1,Gustavson Fred G.2

Affiliation:

1. Danish Computing Center for Research and Education, Lyngby, Denmark

2. IBM T. J. Watson Research Center, Yorktown Heights, NY

Abstract

A new compact way to store a symmetric or triangular matrix called RPF for Recursive Packed Format is fully described. Novel ways to transform RPF to and from standard packed format are included. A new algorithm, called RPC for Recursive Packed Cholesky, that operates on the RPG format is presented. ALgorithm RPC is basd on level-3 BLAS and requires variants of algorithms TRSM and SYRK that work on RPF. We call these RP_TRSM and RP_SYRK and find that they do most of their work by calling GEMM . It follows that most of the execution time of RPC lies in GEMM . The advantage of this storage scheme compared to traditional packed and full storage is demonstrated. First, the RPC storage format uses the minimal amount of storage for the symmetric or triangular matrix. Second, RPC gives a level-3 implementation of Cholesky factorization whereas standard packed implementations are only level 2. Hence, the performance of our RPC implementation is decidedly superior. Third, unlike fixed block size algorithms, RPC, requires no block size tuning parameter. We present performance measurements on several current architectures that demonstrate improvements over the traditional packed routines. Also MSP parallel computations on the IBM SMP computer are made. The graphs that are attached in Section 7 show that the RPC algorithms are superior by a factor between 1.6 and 7.4 for order around 1000, and between 1.9 and 10.3 for order around 3000 over the traditional packed algorithms. For some architectures, the RPC performance results are almost the same or even better than the traditional full-storage algorithms results.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing parallelism of distributed algorithms with the actor model and a smart data movement technique;International Journal of Parallel, Emergent and Distributed Systems;2021-08-31

2. An Efficient Solution to Structured Optimization Problems using Recursive Matrices;Computer Graphics Forum;2019-11

3. Least squares solvers for distributed-memory machines with GPU accelerators;Proceedings of the ACM International Conference on Supercomputing;2019-06-26

4. Linear Systems Solvers for Distributed-Memory Machines with GPU Accelerators;Lecture Notes in Computer Science;2019

5. Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts;ACM Transactions on Architecture and Code Optimization;2017-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3