Affiliation:
1. Danish Computing Center for Research and Education, Lyngby, Denmark
2. IBM T. J. Watson Research Center, Yorktown Heights, NY
Abstract
A new compact way to store a symmetric or triangular matrix called RPF for Recursive Packed Format is fully described. Novel ways to transform RPF to and from standard packed format are included. A new algorithm, called RPC for Recursive Packed Cholesky, that operates on the RPG format is presented. ALgorithm RPC is basd on level-3 BLAS and requires variants of algorithms
TRSM
and
SYRK
that work on RPF. We call these
RP_TRSM
and
RP_SYRK
and find that they do most of their work by calling
GEMM
. It follows that most of the execution time of RPC lies in
GEMM
. The advantage of this storage scheme compared to traditional packed and full storage is demonstrated. First, the RPC storage format uses the minimal amount of storage for the symmetric or triangular matrix. Second, RPC gives a level-3 implementation of Cholesky factorization whereas standard packed implementations are only level 2. Hence, the performance of our RPC implementation is decidedly superior. Third, unlike fixed block size algorithms, RPC, requires no block size tuning parameter. We present performance measurements on several current architectures that demonstrate improvements over the traditional packed routines. Also MSP parallel computations on the IBM SMP computer are made. The graphs that are attached in Section 7 show that the RPC algorithms are superior by a factor between 1.6 and 7.4 for order around 1000, and between 1.9 and 10.3 for order around 3000 over the traditional packed algorithms. For some architectures, the RPC performance results are almost the same or even better than the traditional full-storage algorithms results.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献