Quality-Informed Process Mining: A Case for Standardised Data Quality Annotations

Author:

Goel Kanika1ORCID,Leemans Sander J. J.1ORCID,Martin Niels2,Wynn Moe T.1

Affiliation:

1. School of Information Systems, Queensland University of Technology, Brisbane, Australia

2. Research Group Business Informatics Hasselt University and Research Foundation Flanders, Brussels, Belgium

Abstract

Real-life event logs, reflecting the actual executions of complex business processes, are faced with numerous data quality issues. Extensive data sanity checks and pre-processing are usually needed before historical data can be used as input to obtain reliable data-driven insights. However, most of the existing algorithms in process mining, a field focusing on data-driven process analysis, do not take any data quality issues or the potential effects of data pre-processing into account explicitly. This can result in erroneous process mining results, leading to inaccurate, or misleading conclusions about the process under investigation. To address this gap, we propose data quality annotations for event logs, which can be used by process mining algorithms to generate quality-informed insights. Using a design science approach, requirements are formulated, which are leveraged to propose data quality annotations. Moreover, we present the “Quality-Informed visual Miner” plug-in to demonstrate the potential utility and impact of data quality annotations. Our experimental results, utilising both synthetic and real-life event logs, show how the use of data quality annotations by process mining techniques can assist in increasing the reliability of performance analysis results.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3