Optimisation Techniques for Flexible SPARQL Queries

Author:

Frosini Riccardo1ORCID,Poulovassilis Alexandra1ORCID,Wood Peter T.1ORCID,Calí Andrea2ORCID

Affiliation:

1. Knowledge Lab, Birkbeck, University of London, London, UK

2. Knowledge Lab, Birkbeck, University of London, London, UK and Oxford-Man Institute, Oxford, UK

Abstract

Resource Description Framework datasets can be queried using the SPARQL language but are often irregularly structured and incomplete, which may make precise query formulation hard for users. The SPARQLARlanguage extends SPARQL 1.1 with two operators—APPROX and RELAX—to allow flexible querying over property paths. These operators encapsulate different dimensions of query flexibility, namely, approximation and generalisation, and they allow users to query complex, heterogeneous knowledge graphs without needing to know precisely how the data is structured. Earlier work has described the syntax, semantics, and complexity of SPARQLAR, has demonstrated its practical feasibility, but has also highlighted the need for improving the speed of query evaluation. In the present article, we focus on the design of two optimisation techniques targeted at speeding up the execution of SPARQLARqueries and on their empirical evaluation on three knowledge graphs: LUBM, DBpedia, and YAGO. We show that applying these optimisations can result in substantial improvements in the execution times of longer-running queries (sometimes by one or more orders of magnitude) without incurring significant performance penalties for fast queries.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuning fuzzy SPARQL queries;International Journal of Approximate Reasoning;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3