Latency-Aware Application Module Management for Fog Computing Environments

Author:

Mahmud Redowan1ORCID,Ramamohanarao Kotagiri1,Buyya Rajkumar1

Affiliation:

1. University of Melbourne, Melbourne, Victoria, Australia

Abstract

The fog computing paradigm has drawn significant research interest as it focuses on bringing cloud-based services closer to Internet of Things (IoT) users in an efficient and timely manner. Most of the physical devices in the fog computing environment, commonly named fog nodes, are geographically distributed, resource constrained, and heterogeneous. To fully leverage the capabilities of the fog nodes, large-scale applications that are decomposed into interdependent Application Modules can be deployed in an orderly way over the nodes based on their latency sensitivity. In this article, we propose a latency-aware Application Module management policy for the fog environment that meets the diverse service delivery latency and amount of data signals to be processed in per unit of time for different applications. The policy aims to ensure applications’ Quality of Service (QoS) in satisfying service delivery deadlines and to optimize resource usage in the fog environment. We model and evaluate our proposed policy in an iFogSim-simulated fog environment. Results of the simulation studies demonstrate significant improvement in performance over alternative latency-aware strategies.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3