Comparing Performance of Dry and Gel EEG Electrodes in VR using MI Paradigms

Author:

Ahmadi Mohammad1ORCID,Farrokhi Nia Alireza2ORCID,Michalka Samantha W.3ORCID,Sumich Alexander L.4ORCID,Wuensche Burkhard5ORCID,Billinghurst Mark6ORCID

Affiliation:

1. Empathic Computing Lab, University of Auckland, New Zealand

2. Empathic Computing Lab, Auckland Bioengineering Institute, New Zealand

3. Olin College of Engineering, United States

4. NTU Psychology, Nottingham Trent University, United Kingdom

5. University of Auckland, New Zealand

6. Empathic Computing Lab, The University of Auckland, New Zealand

Publisher

ACM

Reference8 articles.

1. H Altaheri , G Muhammad , M Alsulaiman , S Amin , G Altuwaijri , W Abdul , M Bencherif , and M Faisal . 2021. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Computing and Applications ( 2021 ), 1–42. H Altaheri, G Muhammad, M Alsulaiman, S Amin, G Altuwaijri, W Abdul, M Bencherif, and M Faisal. 2021. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Computing and Applications (2021), 1–42.

2. Determining the optimal feature for two classes Motor-Imagery Brain-Computer Interface (L/R-MI-BCI) systems in different binary classifiers;Alzahab N;International Journal of Mechanical and Mechatronics Engineering,2019

3. Y Chu , X Zhao , Y Zou , W Xu , J Han , and Y Zhao . 2018. A decoding scheme for incomplete motor imagery EEG with deep belief network. Frontiers in neuroscience 12 ( 2018 ), 680. Y Chu, X Zhao, Y Zou, W Xu, J Han, and Y Zhao. 2018. A decoding scheme for incomplete motor imagery EEG with deep belief network. Frontiers in neuroscience 12 (2018), 680.

4. Brain computer interface game controlling using fast fourier transform and learning vector quantization;Djamal E;Journal of Telecommunication, Electronic and Computer Engineering (JTEC),2017

5. M Kousarrizi , A Ghanbari , M Teshnehlab , M Shorehdeli , and A Gharaviri . 2009. Feature extraction and classification of EEG signals using wavelet transform , SVM and artificial neural networks for brain computer interfaces. In 2009 international joint conference on bioinformatics, systems biology and intelligent computing . IEEE , 352–355. M Kousarrizi, A Ghanbari, M Teshnehlab, M Shorehdeli, and A Gharaviri. 2009. Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces. In 2009 international joint conference on bioinformatics, systems biology and intelligent computing. IEEE, 352–355.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3