1. H Altaheri , G Muhammad , M Alsulaiman , S Amin , G Altuwaijri , W Abdul , M Bencherif , and M Faisal . 2021. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Computing and Applications ( 2021 ), 1–42. H Altaheri, G Muhammad, M Alsulaiman, S Amin, G Altuwaijri, W Abdul, M Bencherif, and M Faisal. 2021. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Computing and Applications (2021), 1–42.
2. Determining the optimal feature for two classes Motor-Imagery Brain-Computer Interface (L/R-MI-BCI) systems in different binary classifiers;Alzahab N;International Journal of Mechanical and Mechatronics Engineering,2019
3. Y Chu , X Zhao , Y Zou , W Xu , J Han , and Y Zhao . 2018. A decoding scheme for incomplete motor imagery EEG with deep belief network. Frontiers in neuroscience 12 ( 2018 ), 680. Y Chu, X Zhao, Y Zou, W Xu, J Han, and Y Zhao. 2018. A decoding scheme for incomplete motor imagery EEG with deep belief network. Frontiers in neuroscience 12 (2018), 680.
4. Brain computer interface game controlling using fast fourier transform and learning vector quantization;Djamal E;Journal of Telecommunication, Electronic and Computer Engineering (JTEC),2017
5. M Kousarrizi , A Ghanbari , M Teshnehlab , M Shorehdeli , and A Gharaviri . 2009. Feature extraction and classification of EEG signals using wavelet transform , SVM and artificial neural networks for brain computer interfaces. In 2009 international joint conference on bioinformatics, systems biology and intelligent computing . IEEE , 352–355. M Kousarrizi, A Ghanbari, M Teshnehlab, M Shorehdeli, and A Gharaviri. 2009. Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces. In 2009 international joint conference on bioinformatics, systems biology and intelligent computing. IEEE, 352–355.