Semantic Collaborative Learning for Cross-Modal Moment Localization

Author:

Hu Yupeng1ORCID,Wang Kun1ORCID,Liu Meng2ORCID,Tang Haoyu1ORCID,Nie Liqiang3ORCID

Affiliation:

1. Shandong University, China

2. Shandong Jianzhu University, China

3. Harbin Institute of Technology (Shenzhen), China

Abstract

Localizing a desired moment within an untrimmed video via a given natural language query, i.e., cross-modal moment localization, has attracted widespread research attention recently. However, it is a challenging task because it requires not only accurately understanding intra-modal semantic information, but also explicitly capturing inter-modal semantic correlations (consistency and complementarity). Existing efforts mainly focus on intra-modal semantic understanding and inter-modal semantic alignment, while ignoring necessary semantic supplement. Consequently, we present a cross-modal semantic perception network for more effective intra-modal semantic understanding and inter-modal semantic collaboration. Concretely, we design a dual-path representation network for intra-modal semantic modeling. Meanwhile, we develop a semantic collaborative network to achieve multi-granularity semantic alignment and hierarchical semantic supplement. Thereby, effective moment localization can be achieved based on sufficient semantic collaborative learning. Extensive comparison experiments demonstrate the promising performance of our model compared with existing state-of-the-art competitors.

Funder

National Natural Science Foundation (NSF) of China

NSF of Shandong Province

Key R&D Program of Shandong

Alibaba Group through Alibaba Innovative Research Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference88 articles.

1. Localizing Moments in Video with Natural Language

2. Piotr Bojanowski, Rémi Lajugie, Edouard Grave, Francis Bach, Ivan Laptev, Jean Ponce, and Cordelia Schmid. 2015. Weakly-supervised alignment of video with text. In Proceedings of the IEEE International Conference on Computer Vision. 4462–4470.

3. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

4. Qingchao Chen, Yang Liu, and Samuel Albanie. 2021. Mind-the-gap! Unsupervised domain adaptation for text-video retrieval. In Proceedings of the American Association for Artificial Intelligence. 1072–1080.

5. Fine-grained privacy detection with graph-regularized hierarchical attentive representation learning;Chen Xiaolin;ACM Transactions on Information Systems,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3