Causal Probabilistic Spatio-temporal Fusion Transformers in Two-sided Ride-Hailing Markets

Author:

Wan Shixiang1,Luo Shikai2,Zhu Hongtu3

Affiliation:

1. AI Lab, DiDi Chuxing, Beijing, China

2. ByteDance, Beijing, China

3. University of North Carolina at Chapel Hill, Chapel Hill, USA

Abstract

In this work, we address the complex problem of multi-objective time series forecasting with a focus on predicting interdependent targets such as supply and demand in ride-hailing services. Traditional machine learning techniques approach the targets independently, while deep learning strategies may use joint learning with shared representations, both neglecting inter-target causal relationships and potentially compromising the models’ generalization capabilities. Our novel CausalTrans model introduces a framework to define and leverage the temporal causal interplay between supply and demand, incorporating both temporal and spatial causality into the forecasting process. Additionally, we enhance computational efficiency by introducing an innovative fast attention mechanism that reduces the time complexity from quadratic to linear without sacrificing performance. Our comprehensive experiments show that CausalTrans significantly surpasses contemporary forecasting methods, achieving up to a 15 \(\% \) reduction in error, thus setting a new benchmark in the field.

Publisher

Association for Computing Machinery (ACM)

Reference65 articles.

1. Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, et al. 2019. Gluonts: Probabilistic time series models in python. arXiv preprint arXiv:1906.05264(2019).

2. Mohammad Taha Bahadori Qi Rose Yu and Yan Liu. 2014. Fast multivariate spatio-temporal analysis via low rank tensor learning. In Advances in neural information processing systems. 3491–3499.

3. Moshe Ben-Akiva Michel Bierlaire Haris Koutsopoulos and Rabi Mishalani. 1998. DynaMIT: a simulation-based system for traffic prediction. In DACCORD short term forecasting workshop. Delft The Netherlands 1–12.

4. Nathaniel L Bindoff, Peter AA Stott, Krishna Mirle AchutaRao, Myles RR Allen, Nathan Gillett, David Gutzler, Kabumbwe Hansingo, Gabriele Hegerl, Yongyun Hu, Suman Jain, et al. 2014. Detection and attribution of climate change: from global to regional.

5. Ennio Cascetta. 2013. Transportation systems engineering: theory and methods. Vol.  49. Springer Science & Business Media.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3