Synthesis of Clock Networks with a Mode-Reconfigurable Topology

Author:

Uysal Necati1,Ewetz Rickard1

Affiliation:

1. University of Central Florida, Orlando, FL

Abstract

Modern digital circuits are often required to operate in multiple modes to cater to variable frequency and power requirements. Consequently, the clock networks for such circuits must be synthesized, meeting different timing constraints in different operational modes. The overall power consumption and robustness to variations of a clock network are determined by the topology. However, state-of-the-art clock networks use the same topology in every mode, despite that timing constraints in low- and high-performance modes can be very different. In this article, we propose a clock network with a mode-reconfigurable topology (MRT) for circuits with positive-edge-triggered sequential elements. In high-performance modes, the MRT structure is reconfigured into a near-tree to provide the required robustness to variations. In low-performance modes, the MRT structure is reconfigured into a tree to save power. Non-tree (or near-tree) structures provide robustness to variations by appropriately constructing multiple alternative paths from the clock source to the clock sinks, which neutralizes the negative impact of variations. In MRT structures, OR-gates are used to join multiple alternative paths into a single path. Hence, the MRT structures consume no short-circuit power because there is only one gate driving each net. Moreover, it is straightforward to reconfigure an MRT structure into a tree topology using a single clock gate. In high-performance modes, the experimental results demonstrate that MRT structures have \( 25\% \) lower power consumption than state-of-the-art near-tree structures. In low-performance modes, the power consumption of the MRT structure is similar to the power consumption of a clock tree.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3