Affiliation:
1. University of Pennsylvania
2. NICTA and University of New South Wales
3. University of Tennessee at Martin
4. University of Kentucky
Abstract
A Markov Decision Process (MDP) policy presents, for each state, an action, which preferably maximizes the expected utility accrual over time. In this article, we present a novel explanation system for MDP policies. The system interactively generates conversational English-language explanations of the actions suggested by an optimal policy, and does so in real time. We rely on natural language explanations in order to build trust between the user and the explanation system, leveraging existing research in psychology in order to generate salient explanations. Our explanation system is designed for portability between domains and uses a combination of domain-specific and domain-independent techniques. The system automatically extracts implicit knowledge from an MDP model and accompanying policy. This MDP-based explanation system can be ported between applications without additional effort by knowledge engineers or model builders. Our system separates domain-specific data from the explanation logic, allowing for a robust system capable of incremental upgrades. Domain-specific explanations are generated through case-based explanation techniques specific to the domain and a knowledge base of concept mappings used to generate English-language explanations.
Funder
Division of Computing and Communication Foundations
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献