Redoubtable Sensor Networks

Author:

Di Pietro Roberto1,Mancini Luigi V.2,Mei Alessandro2,Panconesi Alessandro2,Radhakrishnan Jaikumar3

Affiliation:

1. Università di Roma Tre, Italy

2. Sapienza - Università di Roma, Italy

3. Tata Istitute of Fundamental Research, Mumbai, India

Abstract

We give, for the first time, a precise mathematical analysis of the connectivity and security properties of sensor networks that make use of the random predistribution of keys. We also show how to set the parameters---pool and key ring size---in such a way that the network is not only connected with high probability via secure links but also provably resilient, in the following sense: We formally show that any adversary that captures sensors at random with the aim of compromising a constant fraction of the secure links must capture at least a constant fraction of the nodes of the network. In the context of wireless sensor networks where random predistribution of keys is employed, we are the first to provide a mathematically precise proof, with a clear indication of parameter choice, that two crucial properties---connectivity via secure links and resilience against malicious attacks---can be obtained simultaneously. We also show in a mathematically rigorous way that the network enjoys another strong security property. The adversary cannot partition the network into two linear size components, compromising all the links between them, unless it captures linearly many nodes. This implies that the network is also fault tolerant with respect to node failures. Our theoretical results are complemented by extensive simulations that reinforce our main conclusions.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber-Physical Power and Energy Systems with Wireless Sensor Networks: A Systematic Review;Journal of Electrical Engineering & Technology;2023-04-03

2. Probabilistic Key Sharing;Encyclopedia of Cryptography, Security and Privacy;2023

3. Pre-Distribution Encryption Key Scheme for Communicating between IoT Device Layer and Fog Layer;Cybernetics and Systems;2022-11-23

4. Analysis and Clustering of Sensor Recorded Data to Determine Sensors Consuming the Least Energy;Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks;2022-02-04

5. Resilient and secure wireless sensor network under non-full visibility;CCF Transactions on Networking;2019-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3