Fast Adjustable NPN Classification Using Generalized Symmetries

Author:

Zhou Xuegong1ORCID,Wang Lingli1,Mishchenko Alan2

Affiliation:

1. State Key Lab of ASIC and System, Fudan University, Shanghai, China

2. Department of EECS, UC Berkeley, CA, USA

Abstract

NPN classification of Boolean functions is a powerful technique used in many logic synthesis and technology mapping tools in both standard cell and FPGA design flows. Computing the canonical form is the most common approach of Boolean function classification. This article proposes two different hybrid NPN canonical forms and a new algorithm to compute them. By exploiting symmetries under different phase assignment as well as higher-order symmetries, the search space of NPN canonical form computation is pruned and the runtime is dramatically reduced. Nevertheless, the runtime for some difficult functions remains high. Fast heuristic method can be used for such functions to compute semi-canonical forms in a reasonable time. The proposed algorithm can be adjusted to be a slow exact algorithm or a fast heuristic algorithm with lower quality. For exact NPN classification, the proposed algorithm is 40× faster than state-of-the-art. For heuristic classification, the proposed algorithm has similar performance as state-of-the-art with a possibility to trade runtime for quality.

Funder

SRC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Exact NPN Classification with Influence-Aided Canonical Form;2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD);2023-10-28

2. A Database Dependent Framework for K-Input Maximum Fanout-Free Window Rewriting;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

3. Rethinking NPN Classification from Face and Point Characteristics of Boolean Functions;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3