Affiliation:
1. Princeton University, USA
2. Google, USA
Abstract
Type-safe languages improve application safety by eliminating whole classes of vulnerabilities–such as buffer overflows–by construction. However, this safety sometimes comes with a performance cost. As a result, many modern type-safe languages provide escape hatches that allow developers to manually bypass them. The relative value of performance to safety and the degree of performance obtained depends upon the application context, including user goals and the hardware upon which the application is to be executed. Since libraries may be used in many different contexts, library developers cannot make safety-performance trade-off decisions appropriate for all cases. Application developers can tune libraries themselves to increase safety or performance, but this requires extra effort and makes libraries less reusable. To address this problem, we present NADER, a Rust development tool that makes applications safer by automatically transforming unsafe code into equivalent safe code according to developer preferences and application context. In end-to-end system evaluations in a given context, NADER automatically reintroduces numerous library bounds checks, in many cases making application code that uses popular Rust libraries safer with no corresponding loss in performance.
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Indexed Types for a Statically Safe WebAssembly;Proceedings of the ACM on Programming Languages;2024-01-05
2. Safe Low-Level Code Without Overhead is Practical;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05
3. Safe Rust Code Recommendation Based on Siamese Graph Neural Network;2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing (PRDC);2022-11