Enhancing the Energy Efficiency and Robustness of tinyML Computer Vision Using Coarsely-Quantized Log-Gradient Input Images

Author:

Lu Qianyun1,Murmann Boris1

Affiliation:

1. Stanford University, United States

Abstract

This paper studies the merits of applying log-gradient input images to convolutional neural networks (CNNs) for tinyML computer vision (CV). We show that log gradients enable: (i) aggressive 1-bit quantization of first-layer inputs, (ii) potential CNN resource reductions, (iii) inherent insensitivity to illumination changes (1.7% accuracy loss across 2 − 5 ⋅⋅⋅2 3 brightness variation vs. up to 10% for JPEG), and (iv) robustness to adversarial attacks (>10% higher accuracy than JPEG-trained models). We establish these results using the PASCAL RAW image data set and through a combination of experiments using quantization threshold search, neural architecture search, and a fixed three-layer network. The latter reveal that training on log-gradient images leads to higher filter similarity, making the CNN more prunable. The combined benefits of aggressive first-layer quantization, CNN resource reductions, and operation without tight exposure control and image signal processing (ISP) are helpful for pushing tinyML CV toward its ultimate efficiency limits.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference51 articles.

1. Adversarial Robustness by One Bit Double Quantization for Visual Classification

2. Anish Athalye , Logan Engstrom , Andrew Ilyas , and Kevin Kwok . 2018 . Synthesizing robust adversarial examples . In International conference on machine learning. PMLR, 284–293 . Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. 2018. Synthesizing robust adversarial examples. In International conference on machine learning. PMLR, 284–293.

3. Colby Banbury Vijay Janapa Reddi Peter Torelli Jeremy Holleman Nat Jeffries Csaba Kiraly Pietro Montino David Kanter Sebastian Ahmed Danilo Pau Urmish Thakker Antonio Torrini Peter Warden Jay Cordaro Giuseppe Di Guglielmo Javier Duarte Stephen Gibellini Videet Parekh Honson Tran Nhan Tran Niu Wenxu and Xu Xuesong. 2021. MLPerf Tiny Benchmark. arxiv:2106.07597  [cs.LG] Colby Banbury Vijay Janapa Reddi Peter Torelli Jeremy Holleman Nat Jeffries Csaba Kiraly Pietro Montino David Kanter Sebastian Ahmed Danilo Pau Urmish Thakker Antonio Torrini Peter Warden Jay Cordaro Giuseppe Di Guglielmo Javier Duarte Stephen Gibellini Videet Parekh Honson Tran Nhan Tran Niu Wenxu and Xu Xuesong. 2021. MLPerf Tiny Benchmark. arxiv:2106.07597  [cs.LG]

4. MicroNets: Neural network architectures for deploying tinyml applications on commodity microcontrollers;Banbury Colby;Proceedings of Machine Learning and Systems,2021

5. An Always-On 3.8 $\mu$ J/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3