InferLoc: Hypothesis-Based Joint Edge Inference and Localization in Sparse Sensor Networks

Author:

Bai Xuewei1ORCID,Wang Yongcai1ORCID,Ping Haodi1ORCID,Xu Xiaojia1ORCID,Li Deying1ORCID,Wang Shuo1ORCID

Affiliation:

1. Renmin University of China, People’s Republic of China

Abstract

Ranging-based localization is a fundamental problem in the Internet of Things and unmanned aerial vehicle networks. However, the nodes’ limited-ranging scope and users’ broad coverage purpose inevitably cause network sparsity or subnetwork sparsity. The performances of existing localization algorithms are extremely unsatisfactory in sparse networks. A crucial way to deal with the sparsity is to exploit the hidden knowledge provided by the unmeasured edges, which inspires this work to propose a hypothesis-based Joint Edge Inference and Localization algorithm called InferLoc . InferLoc mines the Unmeasured but Inferable Edges (UIEs). Each UIE is an unmeasured edge, but it is restricted through other edges in the network to be inside a rigid component, so it has only a limited number of possible lengths. We propose an efficient method to detect UIEs and geometric approaches to infer possible lengths for UIEs in 2D and 3D networks. The inferred possible lengths of UIEs are then treated as multiple hypotheses to determine the node locations and the lengths of UIEs simultaneously through a joint graph optimization process. In the joint graph optimization model, to make the 0/1 decision variables for hypotheses selection differentiable, differentiable functions are proposed to relax the 0/1 selections, and rounding is applied to select the final length after the optimization converges. We also prove the condition when a UIE can contribute to sparse localization. Extensive experiments show remarkably better accuracy and efficiency performances of InferLoc than the state-of-the-art network localization algorithms. In particular, it reduces the localization errors by more than 90% and speeds up the convergence time more than 100 times than that of the widely used G2O-based methods in sparse networks.

Funder

National Natural Science Foundation of China

Public Computing Cloud, Renmin University of China

Blockchain Laboratory

Metaverse Research Center

Renmin University of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3