Index Problems for Game Automata

Author:

Facchini Alessandro1,Murlak Filip2,Skrzypczak Michał2

Affiliation:

1. IDSIA, Switzerlands

2. University of Warsaw, Warszawa, Poland

Abstract

For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a nondeterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the nondeterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize anymore. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton.

Funder

Poland’s National Science Center

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference36 articles.

1. The mu-calculus alternation-depth hierarchy is strict on binary trees;Arnold André;ITA,1999

2. André Arnold and Damian Niwiński. 2001. Rudiments of Mu-Calculus. Elsevier. André Arnold and Damian Niwiński. 2001. Rudiments of Mu-Calculus. Elsevier.

3. Continuous separation of game languages;Arnold André;Fundamenta Informaticae,2007

4. Ambiguous classes in μ-calculi hierarchies

5. Regular Languages of Infinite Trees That Are Boolean Combinations of Open Sets

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3