Edge-assisted Collaborative Image Recognition for Mobile Augmented Reality

Author:

Lan Guohao1,Liu Zida2,Zhang Yunfan1,Scargill Tim1,Stojkovic Jovan3,Joe-Wong Carlee4,Gorlatova Maria1

Affiliation:

1. Duke University, Durham, NC, USA

2. Pennsylvania State University, PA, USA

3. University of Illinois at Urbana-Champaign, Champaign, IL, USA

4. Carnegie Mellon University, Mountain View, CA, USA

Abstract

Mobile Augmented Reality (AR), which overlays digital content on the real-world scenes surrounding a user, is bringing immersive interactive experiences where the real and virtual worlds are tightly coupled. To enable seamless and precise AR experiences, an image recognition system that can accurately recognize the object in the camera view with low system latency is required. However, due to the pervasiveness and severity of image distortions, an effective and robust image recognition solution for “in the wild” mobile AR is still elusive. In this article, we present CollabAR, an edge-assisted system that provides distortion-tolerant image recognition for mobile AR with imperceptible system latency . CollabAR incorporates both distortion-tolerant and collaborative image recognition modules in its design. The former enables distortion-adaptive image recognition to improve the robustness against image distortions, while the latter exploits the spatial-temporal correlation among mobile AR users to improve recognition accuracy. Moreover, as it is difficult to collect a large-scale image distortion dataset, we propose a Cycle-Consistent Generative Adversarial Network-based data augmentation method to synthesize realistic image distortion. Our evaluation demonstrates that CollabAR achieves over 85% recognition accuracy for “in the wild” images with severe distortions, while reducing the end-to-end system latency to as low as 18.2 ms.

Funder

Lord Foundation of North Carolina

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference90 articles.

1. A. Krizhevsky I. Sutskever and G. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS’12) Vol. 25 1097–1105. A. Krizhevsky I. Sutskever and G. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS’12) Vol. 25 1097–1105.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3