Affiliation:
1. Changshu Institute of Technology, Changshu, Jiangsu, China
2. University of Leicester, Leicester, UK
Abstract
In this article, we focus on the dynamic facial emotion recognition from online video. We combine deep neural networks with transfer learning theory and propose a novel model named DT-EFER. In detail, DT-EFER uses GoogLeNet to extract the deep features of key images from video clips. Then to solve the dynamic facial emotion recognition scenario, the framework introduces transfer learning theory. Thus, to improve the recognition performance, model DT-EFER focuses on the differences between key images instead of those images themselves. Moreover, the time complexity of this model is not high, even if previous exemplars are introduced here. In contrast to other exemplar-based models, experiments based on two datasets, namely, BAUM-1s and Extended Cohn–Kanade, have shown the efficiency of the proposed DT-EFER model.
Funder
2018 Natural Science Foundation of Jiangsu Higher Education Institutions
China Scholarship Council
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献