1. Alvarez-Melis, D., and Jaakkola, T. S. Towards robust interpretability with self-explaining neural networks. arXiv preprint arXiv:1806.07538 (2018).
2. Azzolin, S., Longa, A., Barbiero, P., Lio, P., and Passerini, A. Global explainability of GNNs via logic combination of learned concepts. In The Eleventh International Conference on Learning Representations (2023).
3. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., and Wang, W. Simgnn: A neural network approach to fast graph similarity computation. In WSDM (2019), pp. 384–392.
4. Baldassarre, F., and Azizpour, H. Explainability techniques for graph convolutional networks. arXiv preprint arXiv:1905.13686 (2019).
5. Molecular generative graph neural networks for drug discovery;Bongini P.;Neurocomputing,2021