Deep Attentive Multimodal Network Representation Learning for Social Media Images

Author:

Huang Feiran1ORCID,Li Chaozhuo2,Gao Boyu1,Liu Yun3,Alotaibi Sattam4,Chen Hao3

Affiliation:

1. College of Cyber Security, Jinan University, Guangzhou, China

2. Microsoft Research at Asia, Beijing, China

3. School of Computer Science and Engineering, Beihang University, Beijing, China

4. Head of Innovation and Entrepreneurship Center, College of Engineering, Taif University, Taif, Saudi Arabia

Abstract

The analysis for social networks, such as the socially connected Internet of Things, has shown a deep influence of intelligent information processing technology on industrial systems for Smart Cities. The goal of social media representation learning is to learn dense, low-dimensional, and continuous representations for multimodal data within social networks, facilitating many real-world applications. Since social media images are usually accompanied by rich metadata (e.g., textual descriptions, tags, groups, and submitted users), simply modeling the image is not effective to learn the comprehensive information from social media images. In this work, we treat the image and its textual description as multimodal content, and transform other metainformation into the links between contents (such as two images marked by the same tag or submitted by the same user). Based on the multimodal content and social links, we propose a Deep Attentive Multimodal Graph Embedding model named DAMGE for more effective social image representation learning. We introduce both small- and large-scale datasets to conduct extensive experiments, of which the results confirm the superiority of the proposal on the tasks of social image classification and link prediction.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Guangdong Provincial Key R&D Plan

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explicit time embedding based cascade attention network for information popularity prediction;Information Processing & Management;2023-05

2. Multimodal learning of social image representation;Digital Image Enhancement and Reconstruction;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3