Reinforcement Routing on Proximity Graph for Efficient Recommendation

Author:

Feng Chao1,Lian Defu1,Wang Xiting2,Liu Zheng2,Xie Xing2,Chen Enhong1

Affiliation:

1. University of Science and Technology of China, Hefei, China

2. Microsoft Research Asia, Beijing, China

Abstract

We focus on Maximum Inner Product Search (MIPS), which is an essential problem in many machine learning communities. Given a query, MIPS finds the most similar items with the maximum inner products. Methods for Nearest Neighbor Search (NNS) which is usually defined on metric space do not exhibit the satisfactory performance for MIPS problem since inner product is a non-metric function. However, inner products exhibit many good properties compared with metric functions, such as avoiding vanishing and exploding gradients. As a result, inner product is widely used in many recommendation systems, which makes efficient Maximum Inner Product Search a key for speeding up many recommendation systems. Graph-based methods for NNS problem show the superiorities compared with other class methods. Each data point of the database is mapped to a node of the proximity graph. Nearest neighbor search in the database can be converted to route on the proximity graph to find the nearest neighbor for the query. This technique can be used to solve MIPS problem. Instead of searching the nearest neighbor for the query, we search the item with a maximum inner product with query on the proximity graph. In this article, we propose a reinforcement model to train an agent to search on the proximity graph automatically for MIPS problem if we lack the ground truths of training queries. If we know the ground truths of some training queries, our model can also utilize these ground truths by imitation learning to improve the agent’s searchability. By experiments, we can see that our proposed mode which combines reinforcement learning with imitation learning shows the superiorities over the state-of-the-art methods.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference66 articles.

1. Layer normalization;Ba Jimmy Lei;arXiv:1607.06450.,2016

2. Artem Babenko and Victor Lempitsky. 2014. Additive quantization for extreme vector compression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 931–938.

3. Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces

4. Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko. 2019. Learning to route in similarity graphs. In Proceedings of the International Conference on Machine Learning. 475–484.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3