Troubleshooting interactive complexity bugs in wireless sensor networks using data mining techniques

Author:

Khan Mohammad Maifi Hasan1,Le Hieu Khac1,Ahmadi Hossein1,Abdelzaher Tarek F.1,Han Jiawei1

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

This article presents a tool for uncovering bugs due to interactive complexity in networked sensing applications. Such bugs are not localized to one component that is faulty, but rather result from complex and unexpected interactions between multiple often individually nonfaulty components. Moreover, the manifestations of these bugs are often not repeatable, making them particularly hard to find, as the particular sequence of events that invokes the bug may not be easy to reconstruct. Because of the distributed nature of failure scenarios, our tool looks for sequences of events that may be responsible for faulty behavior, as opposed to localized bugs such as a bad pointer in a module. We identified several challenges in applying discriminative sequence mining for root cause analysis when the system fails to perform as expected and presented our solutions to those challenges. We also present two alternative schemes, namely, two-stage mining and the progressive discriminative sequence mining to address the scalability challenge. An extensible framework is developed where a front-end collects runtime data logs of the system being debugged and an offline back-end uses frequent discriminative pattern mining to uncover likely causes of failure. We provided several case studies where we applied our tool successfully to troubleshoot the cause of the problem. We uncovered a kernel-level race condition bug in the LiteOS operating system and a protocol design bug in the directed diffusion protocol. We also presented a case study of debugging a multichannel MAC protocol that was found to exhibit corner cases of poor performance (worse than single-channel MAC). The tool helped to uncover event sequences that lead to a highly degraded mode of operation. Fixing the problem significantly improved the performance of the protocol. We also evaluated the extensions presented in this article. Finally, we provided a detailed analysis of tool overhead in terms of memory requirements and impact on the running application.

Funder

Division of Computer and Network Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3