From Music Scores to Audio Recordings: Deep Pitch-Class Representations for Measuring Tonal Structures

Author:

Weiß Christof1ORCID,Müller Meinard2ORCID

Affiliation:

1. Center for Artificial Intelligence and Data Science, Universität Würzburg, Würzburg, Germany

2. International Audio Laboratories Erlangen, Erlangen, Germany

Abstract

The availability of digital music data in various modalities provides opportunities both for music enjoyment and music research. Regarding the latter, the computer-assisted analysis of tonal structures is a central topic. For Western classical music, studies typically rely on machine-readable scores, which are tedious to create for large-scale works and comprehensive corpora. As an alternative, music audio recordings, which are readily available, can be analyzed with computational methods. With this article, we want to bridge the gap between score- and audio-based measurements of tonal structures by leveraging the power of deep neural networks. Such networks are commonly trained in an end-to-end fashion, which introduces biases towards the training repertoire or towards specific annotators. To overcome these problems, we propose a multi-step strategy. First, we compute pitch-class representations of the audio recordings using networks trained on score–audio pairs. Second, we measure the presence of specific tonal structures using a pattern-matching technique that solely relies on music theory knowledge and does not require annotated training data. Third, we highlight these measurements with interactive visualizations, thus leaving the interpretation to the musicological experts. Our experiments on Richard Wagner's large-scale cycle Der Ring des Nibelungen indicate that deep pitch-class representations lead to a high similarity between score- and audio-based measurements of tonal structures, thus demonstrating how to leverage multi-modal data for application scenarios in the computational humanities, where an explicit and interpretable methodology is essential.

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. Jazz Bass Transcription Using a U-Net Architecture

2. Lei J. Ba Jamie R. Kiros and Geoffrey E. Hinton. 2016. Layer normalization. arXiv:1607.06450. Retrieved from https://arxiv.org/abs/1607.06450

3. Automatic Music Transcription: An Overview

4. On the Relative Importance of Individual Components of Chord Recognition Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3