A Visual Analytics Framework for Exploring Theme Park Dynamics

Author:

Steptoe Michael1,Krüger Robert2,Garcia Rolando1,Liang Xing1,Maciejewski Ross1

Affiliation:

1. Arizona State University

2. University of Stuttgart

Abstract

In 2015, the top 10 largest amusement park corporations saw a combined annual attendance of over 400 million visitors. Daily average attendance in some of the most popular theme parks in the world can average 44,000 visitors per day. These visitors ride attractions, shop for souvenirs, and dine at local establishments; however, a critical component of their visit is the overall park experience. This experience depends on the wait time for rides, the crowd flow in the park, and various other factors linked to the crowd dynamics and human behavior. As such, better insight into visitor behavior can help theme parks devise competitive strategies for improved customer experience. Research into the use of attractions, facilities, and exhibits can be studied, and as behavior profiles emerge, park operators can also identify anomalous behaviors of visitors which can improve safety and operations. In this article, we present a visual analytics framework for analyzing crowd dynamics in theme parks. Our proposed framework is designed to support behavioral analysis by summarizing patterns and detecting anomalies. We provide methodologies to link visitor movement data, communication data, and park infrastructure data. This combination of data sources enables a semantic analysis of who , what , when , and where , enabling analysts to explore visitor-visitor interactions and visitor-infrastructure interactions. Analysts can identify behaviors at the macro level through semantic trajectory clustering views for group behavior dynamics, as well as at the micro level using trajectory traces and a novel visitor network analysis view. We demonstrate the efficacy of our framework through two case studies of simulated theme park visitors.

Funder

National Science Foundation

U.S. Department of Homeland Security's VACCINE Center

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3