A Video Bitrate Adaptation and Prediction Mechanism for HTTP Adaptive Streaming

Author:

Sobhani Ashkan1,Yassine Abdulsalam1,Shirmohammadi Shervin1

Affiliation:

1. University of Ottawa, Canada

Abstract

The Hypertext Transfer Protocol (HTTP) Adaptive Streaming (HAS) has now become ubiquitous and accounts for a large amount of video delivery over the Internet. But since the Internet is prone to bandwidth variations, HAS's up and down switching between different video bitrates to keep up with bandwidth variations leads to a reduction in Quality of Experience (QoE). In this article, we propose a video bitrate adaptation and prediction mechanism based on Fuzzy logic for HAS players, which takes into consideration the estimate of available network bandwidth as well as the predicted buffer occupancy level in order to proactively and intelligently respond to current conditions. This leads to two contributions: First, it allows HAS players to take appropriate actions, sooner than existing methods, to prevent playback interruptions caused by buffer underrun, reducing the ON-OFF traffic phenomena associated with current approaches and increasing the QoE. Second, it facilitates fair sharing of bandwidth among competing players at the bottleneck link. We present the implementation of our proposed mechanism and provide both empirical/QoE analysis and performance comparison with existing work. Our results show that, compared to existing systems, our system has (1) better fairness among multiple competing players by almost 50% on average and as much as 80% as indicated by Jain's fairness index and (2) better perceived quality of video by almost 8% on average and as much as 17%, according to the estimate the Mean Opinion Score (eMOS) model.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Cloud VR Gaming Optimized by Gamer QoE Models;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-25

2. DeX: Deep learning-based throughput prediction for real-time communications with emphasis on traffic eXtremes;Computer Networks;2024-07

3. TPMI:Accurate Throughput Prediction for Better Bitrate Selection in Adaptive Video Streaming;2023 2nd International Conference on Sensing, Measurement, Communication and Internet of Things Technologies (SMC-IoT);2023-12-29

4. HTTP adaptive streaming scheme based on reinforcement learning with edge computing assistance;Journal of Network and Computer Applications;2023-04

5. PRIOR;Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video;2022-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3