FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces

Author:

Medin Safa C.1ORCID,Li Gengyan2ORCID,Du Ruofei3ORCID,Garbin Stephan4ORCID,Davidson Philip3ORCID,Wornell Gregory W.5ORCID,Beeler Thabo6ORCID,Meka Abhimitra3ORCID

Affiliation:

1. MIT, USA and Google, USA

2. ETH Zurich, Switzerland and Google, Switzerland

3. Google, USA

4. Google, United Kingdom

5. MIT, USA

6. Google, Switzerland

Abstract

3D rendering of dynamic face captures is a challenging problem, and it demands improvements on several fronts---photorealism, efficiency, compatibility, and configurability. We present a novel representation that enables high-quality volumetric rendering of an actor's dynamic facial performances with minimal compute and memory footprint. It runs natively on commodity graphics soft- and hardware, and allows for a graceful trade-off between quality and efficiency. Our method utilizes recent advances in neural rendering, particularly learning discrete radiance manifolds to sparsely sample the scene to model volumetric effects. We achieve efficient modeling by learning a single set of manifolds for the entire dynamic sequence, while implicitly modeling appearance changes as temporal canonical texture. We export a single layered mesh and view-independent RGBA texture video that is compatible with legacy graphics renderers without additional ML integration. We demonstrate our method by rendering dynamic face captures of real actors in a game engine, at comparable photorealism to state-of-the-art neural rendering techniques at previously unseen frame rates.

Publisher

Association for Computing Machinery (ACM)

Reference69 articles.

1. SAL: Sign Agnostic Learning of Shapes From Raw Data

2. Learning Personalized High Quality Volumetric Head Avatars from Monocular RGB Videos

3. Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

4. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields

5. Alexander W. Bergman Petr Kellnhofer Wang Yifan Eric R. Chan David B. Lindell and Gordon Wetzstein. 2023. Generative Neural Articulated Radiance Fields. arXiv:2206.14314 [cs.CV]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3