Evaluating Controlled Memory Request Injection for Efficient Bandwidth Utilization and Predictable Execution in Heterogeneous SoCs

Author:

Brilli Gianluca1ORCID,Cavicchioli Roberto2ORCID,Solieri Marco3ORCID,Valente Paolo3ORCID,Marongiu Andrea3ORCID

Affiliation:

1. Department of ‘Ingegneria Enzo Ferrari’, University of Modena and Reggio Emilia, Modena, Europe

2. Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Europe

3. Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy

Abstract

High-performance embedded platforms are increasingly adopting heterogeneous systems-on-chip (HeSoC) that couple multi-core CPUs with accelerators such as GPU, FPGA, or AI engines. Adopting HeSoCs in the context of real-time workloads is not immediately possible, though, as contention on shared resources like the memory hierarchy—and in particular the main memory (DRAM)—causes unpredictable latency increase. To tackle this problem, both the research community and certification authorities mandate (i) that accesses from parallel threads to the shared system resources (typically, main memory) happen in a mutually exclusive manner by design, or (ii) that per-thread bandwidth regulation is enforced. Such arbitration schemes provide timing guarantees, but make poor use of the memory bandwidth available in a modern HeSoC. Controlled Memory Request Injection (CMRI) is a recently-proposed bandwidth limitation concept that builds on top of a mutually-exclusive schedule but still allows the threads currently not entitled to access memory to use as much of the unused bandwidth as possible without losing the timing guarantee. CMRI has been discussed in the context of a multi-core CPU, but the same principle applies also to a more complex system such as an HeSoC. In this article, we introduce two CMRI schemes suitable for HeSoCs: Voluntary Throttling via code refactoring and Bandwidth Regulation via dynamic throttling. We extensively characterize a proof-of-concept incarnation of both schemes on two HeSoCs: an NVIDIA Tegra TX2 and a Xilinx UltraScale+, highlighting the benefits and the costs of CMRI for synthetic workloads that model worst-case DRAM access. We also test the effectiveness of CMRI with real benchmarks, studying the effect of interference among the host CPU and the accelerators.

Funder

ECSEL JU projects COMP4DRONES

AI4CSM

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3