Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools

Author:

Black Emily1ORCID,Naidu Rakshit2ORCID,Ghani Rayid3ORCID,Rodolfa Kit4ORCID,Ho Daniel4ORCID,Heidari Hoda5ORCID

Affiliation:

1. Barnard College, USA

2. Georgia Institute of Technology, USA

3. Carnegie Mellon University, USA

4. Stanford University, USA

5. Carnegie Mellon University, United States

Funder

National Science Foundation

Publisher

ACM

Reference112 articles.

1. Alekh Agarwal Alina Beygelzimer Miroslav Dudik John Langford and Hanna Wallach. 2018. A Reductions Approach to Fair Classification. 60–69 pages. https://proceedings.mlr.press/v80/agarwal18a.html Alekh Agarwal Alina Beygelzimer Miroslav Dudik John Langford and Hanna Wallach. 2018. A Reductions Approach to Fair Classification. 60–69 pages. https://proceedings.mlr.press/v80/agarwal18a.html

2. NIST AI. 2023. Artificial Intelligence Risk Management Framework (AI RMF 1.0). NIST AI. 2023. Artificial Intelligence Risk Management Framework (AI RMF 1.0).

3. Nil-Jana Akpinar Manish Nagireddy Logan Stapleton Hao-Fei Cheng Haiyi Zhu Steven Wu and Hoda Heidari. 2022. A Sandbox Tool to Bias (Stress)-Test Fairness Algorithms. Nil-Jana Akpinar Manish Nagireddy Logan Stapleton Hao-Fei Cheng Haiyi Zhu Steven Wu and Hoda Heidari. 2022. A Sandbox Tool to Bias (Stress)-Test Fairness Algorithms.

4. Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-aware programming. 211–219 pages. Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-aware programming. 211–219 pages.

5. Eugene Bagdasaryan Omid Poursaeed and Vitaly Shmatikov. 2019. Differential privacy has disparate impact on model accuracy. Eugene Bagdasaryan Omid Poursaeed and Vitaly Shmatikov. 2019. Differential privacy has disparate impact on model accuracy.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ten simple rules for building and maintaining a responsible data science workflow;PLOS Computational Biology;2024-07-18

2. Impact Charts: A Tool for Identifying Systematic Bias in Social Systems and Data;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. AI Failure Cards: Understanding and Supporting Grassroots Efforts to Mitigate AI Failures in Homeless Services;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

4. D-hacking;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

5. Operationalizing the Search for Less Discriminatory Alternatives in Fair Lending;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3