Medial Elastics

Author:

Lan Lei1,Luo Ran2,Fratarcangeli Marco3,Xu Weiwei4,Wang Huamin5,Guo Xiaohu6,Yao Junfeng7,Yang Yin8ORCID

Affiliation:

1. Xiamen University 8 University of New Mexico, Albuquerque, NM

2. University of New Mexico, Albuquerque, NM

3. Chalmers University of Technology, Gothenburg, Sweden

4. State Ley Lab of CAD 8 CG, Zhejiang University, Hangzhou, China

5. Ohio State University, Columbus, OH

6. University of Texas at Dallas, Richardson, Texas

7. Xiamen University, Xiamen, China

8. Clemson University 8 University of New Mexico, Albuquerque, NM

Abstract

We propose a framework for the interactive simulation of nonlinear deformable objects. The primary feature of our system is the seamless integration of deformable simulation and collision culling, which are often independently handled in existing animation systems. The bridge connecting them is the medial axis transform (MAT), a high-fidelity volumetric approximation of complex 3D shapes. From the physics simulation perspective, MAT leads to an expressive and compact reduced nonlinear model. We employ a semireduced projective dynamics formulation, which well captures high-frequency local deformations of high-resolution models while retaining a low computation cost. Our key observation is that the most compelling (nonlinear) deformable effects are enabled by the local constraints projection, which should not be aggressively reduced, and only apply model reduction at the global stage. From the collision detection (CD)/collision culling (CC) perspective, MAT is geometrically versatile using linear-interpolated spheres (i.e., the so-called medial primitives (MPs)) to approximate the boundary of the input model. The intersection test between two MPs is formulated as a quadratically constrained quadratic program problem. We give an algorithm to solve this problem exactly, which returns the deepest penetration between a pair of intersecting MPs. When coupled with spatial hashing, collision (including self-collision) can be efficiently identified on the GPU within a few milliseconds even for massive simulations. We have tested our system on a variety of geometrically complex and high-resolution deformable objects, and our system produces convincing animations with all of the collisions/self-collisions well handled at an interactive rate.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolving Collisions in Dense 3D Crowd Animations;ACM Transactions on Graphics;2024-09-06

2. GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. Subspace Mixed Finite Elements for Real-Time Heterogeneous Elastodynamics;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

4. Point2MM: Learning medial mesh from point clouds;Computers & Graphics;2023-10

5. Second-order Stencil Descent for Interior-point Hyperelasticity;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3