Hardware-Software Collaborative Tiered-Memory Management Framework for Virtualization

Author:

Sha Sai1ORCID,Li Chuandong2ORCID,Wang Xiaolin2ORCID,Wang Zhenlin3ORCID,Luo Yingwei2ORCID

Affiliation:

1. Peking University and Beijing Huawei Digital Technologies, China

2. Peking University, China

3. Michigan Technological University, USA

Abstract

The tiered-memory system can effectively expand the memory capacity for virtual machines (VMs). However, virtualization introduces new challenges specifically in enforcing performance isolation, minimizing context switching, and providing resource overcommit. None of the state-of-the-art designs consider virtualization and address these challenges; we observe that a VM with tiered memory incurs up to a 2× slowdown compared to a DRAM-only VM. We propose vTMM , a hardware-software collaborative tiered-memory management framework for virtualization. A key insight in vTMM is to leverage the unique system features in virtualization to meet the above challenges. vTMM automatically determines page hotness and migrates pages between fast and slow memory to achieve better performance. Specially, vTMM optimizes page tracking and migration based on page-modification logging (PML), a hardware-assisted virtualization mechanism, and adaptively distinguishes hot/cold pages through the page “temperature” sorting. vTMM also dynamically adjusts fast memory among multi-VMs on demand by using a memory pool. Further, vTMM tracks huge pages at regular-page granularity in hardware and splits/merges pages in software, realizing hybrid-grained page management and optimization. We implement and evaluate vTMM with single-grained page management on an Intel processor, and the hybrid-grained page management on a Sunway processor with hardware mode supporting hardware/software co-designs. Experiments show that vTMM outperforms existing tiered-memory management designs in virtualization.

Funder

National Key R&D Program of China

National Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application-Attuned Memory Management for Containerized HPC Workflows;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3