UbiPhysio

Author:

Wang Chongyang1ORCID,Feng Yuan2ORCID,Zhong Lingxiao1ORCID,Zhu Siyi2ORCID,Zhang Chi1ORCID,Zheng Siqi1ORCID,Liang Chen1ORCID,Wang Yuntao1ORCID,He Chengqi2ORCID,Yu Chun1ORCID,Shi Yuanchun3ORCID

Affiliation:

1. Tsinghua University, China

2. West China Hospital, Sichuan University, China

3. Tsinghua University and Qinghai University, China

Abstract

We introduce UbiPhysio, a milestone framework that delivers fine-grained action description and feedback in natural language to support people's daily functioning, fitness, and rehabilitation activities. This expert-like capability assists users in properly executing actions and maintaining engagement in remote fitness and rehabilitation programs. Specifically, the proposed UbiPhysio framework comprises a fine-grained action descriptor and a knowledge retrieval-enhanced feedback module. The action descriptor translates action data, represented by a set of biomechanical movement features we designed based on clinical priors, into textual descriptions of action types and potential movement patterns. Building on physiotherapeutic domain knowledge, the feedback module provides clear and engaging expert feedback. We evaluated UbiPhysio's performance through extensive experiments with data from 104 diverse participants, collected in a home-like setting during 25 types of everyday activities and exercises. We assessed the quality of the language output under different tuning strategies using standard benchmarks. We conducted a user study to gather insights from clinical physiotherapists and potential users about our framework. Our initial tests show promise for deploying UbiPhysio in real-life settings without specialized devices.

Funder

Natural Science Foundation of Sichuan Province

1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University

Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference72 articles.

1. Kinect. 2023. www.xbox.com/en-US/kinect

2. Noitom. 2023. www.noitom.com/perception-neuron-series

3. Hillel Aviezer, Yaacov Trope, and Alexander Todorov. 2012. Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science 338, 6111 (2012), 1225--1229.

4. Lisa Feldman Barrett, Batja Mesquita, and Maria Gendron. 2011. Context in emotion perception. Current directions in psychological science 20, 5 (2011), 286--290.

5. Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3