Reducing the Complexity of Dataflow Graphs Using Slack-Based Merging

Author:

Ali Hazem Ismail1,Stuijk Sander2,Akesson Benny3,Pinho Luís Miguel1

Affiliation:

1. CISTER Research Centre/INESC-TEC, Portugal

2. Eindhoven University of Technology, Eindhoven, The Netherlands

3. CISTER Research Centre/INESC-TEC, Czech Technical University in Prague, Portugal

Abstract

There exist many dataflow applications with timing constraints that require real-time guarantees on safe execution without violating their deadlines. Extraction of timing parameters (offsets, deadlines, periods) from these applications enables the use of real-time scheduling and analysis techniques, and provides guarantees on satisfying timing constraints. However, existing extraction techniques require the transformation of the dataflow application from highly expressive dataflow computational models, for example, Synchronous Dataflow (SDF) and Cyclo-Static Dataflow (CSDF) to Homogeneous Synchronous Dataflow (HSDF). This transformation can lead to an exponential increase in the size of the application graph that significantly increases the runtime of the analysis. In this article, we address this problem by proposing an offline heuristic algorithm called slack-based merging . The algorithm is a novel graph reduction technique that helps in speeding up the process of timing parameter extraction and finding a feasible real-time schedule, thereby reducing the overall design time of the real-time system. It uses two main concepts: (a) the difference between the worst-case execution time of the SDF graph’s firings and its timing constraints (slack) to merge firings together and generate a reduced-size HSDF graph, and (b) the novel concept of merging called safe merge , which is a merge operation that we formally prove cannot cause a live HSDF graph to deadlock. The results show that the reduced graph (1) respects the throughput and latency constraints of the original application graph and (2) typically speeds up the process of extracting timing parameters and finding a feasible real-time schedule for real-time dataflow applications. They also show that when the throughput constraint is relaxed with respect to the maximal throughput of the graph, the merging algorithm is able to achieve a larger reduction in graph size, which in turn results in a larger speedup of the real-time scheduling algorithms.

Funder

FCT and EU ARTEMIS JU

Portuguese National Funds through FCT

ERDF (European Regional Development Fund) through COMPETE

European social fund within the framework of realizing the project “Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague,”

JU

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3