Hardware-software co-optimization of memory management in dynamic languages

Author:

Ismail Mohamed1,Suh G. Edward1

Affiliation:

1. Cornell University, USA

Abstract

Dynamic programming languages are becoming increasingly popular, yet often show a significant performance slowdown compared to static languages. In this paper, we study the performance overhead of automatic memory management in dynamic languages. We propose to improve the performance and memory bandwidth usage of dynamic languages by co-optimizing garbage collection overhead and cache performance for newly-initialized and dead objects. Our study shows that less frequent garbage collection results in a large number of cache misses for initial stores to new objects. We solve this problem by directly placing uninitialized objects into on-chip caches without off-chip memory accesses. We further optimize the garbage collection by reducing unnecessary cache pollution and write-backs through partial tracing that invalidates dead objects between full garbage collections. Experimental results on PyPy and V8 show that less frequent garbage collection along with our optimizations can significantly improve the performance of dynamic languages.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference34 articles.

1. Tracing the meta-level

2. Browserbench. 2017. JetStream 1.1. (2017). http://browserbench.org/ JetStream/ Browserbench. 2017. JetStream 1.1. (2017). http://browserbench.org/ JetStream/

3. Coding Dojo. 2016. The 9 Most In-Demand Programming Languages of 2016. (2016). http://www.codingdojo.com/blog/ 9-most-in-demand-programming-languages-of-2016/ Coding Dojo. 2016. The 9 Most In-Demand Programming Languages of 2016. (2016). http://www.codingdojo.com/blog/ 9-most-in-demand-programming-languages-of-2016/

4. Google. 2018. Chrome V8. (2018). https://developers.google.com/v8/ Google. 2018. Chrome V8. (2018). https://developers.google.com/v8/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A memory footprint optimization framework for Python applications targeting edge devices;Journal of Systems Architecture;2023-09

2. The Cost of Speculation: Revisiting Overheads in the V8 JavaScript Engine;2021 IEEE International Symposium on Workload Characterization (IISWC);2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3