Monadic second-order logic on finite sequences

Author:

D'Antoni Loris1,Veanes Margus2

Affiliation:

1. University of Wisconsin-Madison, USA

2. Microsoft Research, USA

Abstract

We extend the weak monadic second-order logic of one successor on finite strings (M2L-STR) to symbolic alphabets by allowing character predicates to range over decidable quantifier free theories instead of finite alphabets. We call this logic, which is able to describe sequences over complex and potentially infinite domains, symbolic M2L-STR (S-M2L-STR). We then present a decision procedure for S-M2L-STR based on a reduction to symbolic finite automata, a decidable extension of finite automata that allows transitions to carry predicates and can therefore model symbolic alphabets. The reduction constructs a symbolic automaton over an alphabet consisting of pairs of symbols where the first element of the pair is a symbol in the original formula’s alphabet, while the second element is a bit-vector. To handle this modified alphabet we show that the Cartesian product of two decidable Boolean algebras (e.g., the formula’s one and the bit-vector’s one) also forms a decidable Boolean algebras. To make the decision procedure practical, we propose two efficient representations of the Cartesian product of two Boolean algebras, one based on algebraic decision diagrams and one on a variant of Shannon expansions. Finally, we implement our decision procedure and evaluate it on more than 10,000 formulas. Despite the generality, our implementation has comparable performance with the state-of-the-art M2L-STR solvers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reasoning About Data Trees Using CHCs;Computer Aided Verification;2022

2. Natural Projection as Partial Model Checking;Journal of Automated Reasoning;2020-08-13

3. Monadic Decomposition;Journal of the ACM;2017-06-02

4. The Power of Symbolic Automata and Transducers;Computer Aided Verification;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3