On verifying causal consistency

Author:

Bouajjani Ahmed1,Enea Constantin1,Guerraoui Rachid2,Hamza Jad3

Affiliation:

1. University of Paris Diderot, France

2. EPFL, Switzerland

3. Inria, France / EPFL, Switzerland

Abstract

Causal consistency is one of the most adopted consistency criteria for distributed implementations of data structures. It ensures that operations are executed at all sites according to their causal precedence. We address the issue of verifying automatically whether the executions of an implementation of a data structure are causally consistent. We consider two problems: (1) checking whether one single execution is causally consistent, which is relevant for developing testing and bug finding algorithms, and (2) verifying whether all the executions of an implementation are causally consistent. We show that the first problem is NP-complete. This holds even for the read-write memory abstraction, which is a building block of many modern distributed systems. Indeed, such systems often store data in key-value stores, which are instances of the read-write memory abstraction. Moreover, we prove that, surprisingly, the second problem is undecidable , and again this holds even for the read-write memory abstraction. However, we show that for the read-write memory abstraction, these negative results can be circumvented if the implementations are data independent , i.e., their behaviors do not depend on the data values that are written or read at each moment, which is a realistic assumption. We prove that for data independent implementations, the problem of checking the correctness of a single execution w.r.t. the read-write memory abstraction is polynomial time. Furthermore, we show that for such implementations the set of non-causally consistent executions can be represented by means of a finite number of register automata . Using these machines as observers (in parallel with the implementation) allows to reduce polynomially the problem of checking causal consistency to a state reachability problem. This reduction holds regardless of the class of programs used for the implementation, of the number of read-write variables, and of the used data domain. It allows leveraging existing techniques for assertion/reachability checking to causal consistency verification. Moreover, for a significant class of implementations, we derive from this reduction the decidability of verifying causal consistency w.r.t. the read-write memory abstraction.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Weakly Isolated Data Store Applications;Proceedings of the ACM on Programming Languages;2024-06-20

2. Timestamp system for causal broadcast communication;The Journal of Supercomputing;2024-05-22

3. How Hard Is Weak-Memory Testing?;Proceedings of the ACM on Programming Languages;2024-01-05

4. Optimal Reads-From Consistency Checking for C11-Style Memory Models;Proceedings of the ACM on Programming Languages;2023-06-06

5. Viper: A Fast Snapshot Isolation Checker;Proceedings of the Eighteenth European Conference on Computer Systems;2023-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3