NeLT: Object-Oriented Neural Light Transfer

Author:

Zheng Chuankun1ORCID,Huo Yuchi2ORCID,Mo Shaohua1ORCID,Zhong Zhihua1ORCID,Wu Zhizhen1ORCID,Hua Wei3ORCID,Wang Rui1ORCID,Bao Hujun2ORCID

Affiliation:

1. Zhejiang University

2. Zhejiang University and Zhejiang Lab

3. Zhejiang Lab

Abstract

This article presents object-oriented neural light transfer (NeLT), a novel neural representation of the dynamic light transportation between an object and the environment. Our method disentangles the global illumination of a scene into individual objects’ light transportation represented via neural networks, then composes them explicitly. It therefore enables flexible rendering with dynamic lighting, cameras, materials, and objects. Our rendering features various important global illumination effects, such as diffuse illumination, glossy illumination, dynamic shadowing, and indirect illumination, which completes the capability of existing neural object representation. Experiments show that NeLT does not require path tracing or shading results as input but achieves rendering quality comparable to state-of-the-art rendering frameworks, including the recent deep learning based denoisers.

Funder

Key R&D Program of Zhejiang Province

NSFC

Fundamental Research Funds for the Central Universities, Zhejiang Lab

Key Research Project of Zhejiang Lab

Information Technology Center and State Key Lab of CAD&CG, Zhejiang University

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference59 articles.

1. Kara-Ali Aliev Artem Sevastopolsky Maria Kolos Dmitry Ulyanov and Victor Lempitsky. 2020. Neural point-based graphics. In Computer Vision—ECCV 2020 . Lecture Notes in Computer Science Vol. 12367. Springer 696–712.

2. Kernel-predicting convolutional networks for denoising Monte Carlo renderings.;Bako Steve;ACM Transactions on Graphics,2017

3. A precomputed polynomial representation for interactive BRDF editing with global illumination;Ben-Artzi Aner;ACM Transactions on Graphics,2008

4. Real-time BRDF editing in complex lighting;Ben-Artzi Aner;ACM Transactions on Graphics,2006

5. Adrian Blumer, Jan Novák, Ralf Habel, Derek Nowrouzezahrai, and Wojciech Jarosz. 2016. Reduced aggregate scattering operators for path tracing. Computer Graphics Forum 35 (2016), 461–473.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real‐time Neural Rendering of Dynamic Light Fields;Computer Graphics Forum;2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3