CASHT: Contention Analysis in Shared Hierarchies with Thefts

Author:

Gomes Cesar1ORCID,Amiraski Maziar1,Hempstead Mark1

Affiliation:

1. Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts, USA

Abstract

Cache management policies should consider workloads’ contention behavior when managing a shared cache. Prior art makes estimates about shared cache behavior by adding extra logic or time to isolate per workload cache statistics. These approaches provide per-workload analysis but do not provide a holistic understanding of the utilization and effectiveness of caches under the ever-growing contention that comes standard with scaling cores. We present Contention Analysis in Shared Hierarchies using Thefts, or CASHT, 1 a framework for capturing cache contention information both offline and online. CASHT takes advantage of cache statistics made richer by observing a consequence of cache contention: inter-core evictions, or what we call THEFTS. We use thefts to complement more familiar cache statistics to train a learning model based on Gradient-boosting Trees (GBT) to predict the best ways to partition the last-level cache. GBT achieves 90+% accuracy with trained models as small as 100 B and at least 95% accuracy at 1 kB model size when predicting the best way to partition two workloads. CASHT employs a novel run-time framework for collecting thefts-based metrics despite partition intervention, and enables per-access sampling rather than set sampling that could add overhead but may not capture true workload behavior. Coupling CASHT and GBT for use as a dynamic policy results in a very lightweight and dynamic partitioning scheme that performs within a margin of error of Utility-based Cache Partitioning at a 1/8 the overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CInC: Workload Characterization In Context of Resource Contention;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01

2. PInTE: Probabilistic Induction of Theft Evictions;2022 IEEE International Symposium on Workload Characterization (IISWC);2022-11

3. Cache Antagonists Identification: A Practice from Alibaba Colocation Datacenter;2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3