Affiliation:
1. Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts, USA
Abstract
Cache management policies should consider workloads’ contention behavior when managing a shared cache. Prior art makes estimates about shared cache behavior by adding extra logic or time to isolate per workload cache statistics. These approaches provide per-workload analysis but do not provide a holistic understanding of the utilization and effectiveness of caches under the ever-growing contention that comes standard with scaling cores. We present Contention Analysis in Shared Hierarchies using Thefts, or CASHT,
1
a framework for capturing cache contention information both offline and online. CASHT takes advantage of cache statistics made richer by observing a consequence of cache contention: inter-core evictions, or what we call THEFTS. We use thefts to complement more familiar cache statistics to train a learning model based on Gradient-boosting Trees (GBT) to predict the best ways to partition the last-level cache. GBT achieves 90+% accuracy with trained models as small as 100 B and at least 95% accuracy at 1 kB model size when predicting the best way to partition two workloads. CASHT employs a novel run-time framework for collecting thefts-based metrics despite partition intervention, and enables per-access sampling rather than set sampling that could add overhead but may not capture true workload behavior. Coupling CASHT and GBT for use as a dynamic policy results in a very lightweight and dynamic partitioning scheme that performs within a margin of error of Utility-based Cache Partitioning at a 1/8 the overhead.
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Information Systems,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CInC: Workload Characterization In Context of Resource Contention;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01
2. PInTE: Probabilistic Induction of Theft Evictions;2022 IEEE International Symposium on Workload Characterization (IISWC);2022-11
3. Cache Antagonists Identification: A Practice from Alibaba Colocation Datacenter;2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW);2022-10