Co-Simulation

Author:

Gomes Cláudio1ORCID,Thule Casper2,Broman David3,Larsen Peter Gorm2,Vangheluwe Hans4

Affiliation:

1. University of Antwerp, Belgium

2. Aarhus University, Denmark

3. KTH Royal Institute of Technology, Sweden

4. University of Antwerp, Flanders Make and McGill University, Canada

Abstract

Modeling and simulation techniques are today extensively used both in industry and science. Parts of larger systems are, however, typically modeled and simulated by different techniques, tools, and algorithms. In addition, experts from different disciplines use various modeling and simulation techniques. Both these facts make it difficult to study coupled heterogeneous systems. Co-simulation is an emerging enabling technique, where global simulation of a coupled system can be achieved by composing the simulations of its parts. Due to its potential and interdisciplinary nature, co-simulation is being studied in different disciplines but with limited sharing of findings. In this survey, we study and survey the state-of-the-art techniques for co-simulation, with the goal of enhancing future research and highlighting the main challenges. To study this broad topic, we start by focusing on discrete-event-based co-simulation, followed by continuous-time-based co-simulation. Finally, we explore the interactions between these two paradigms, in hybrid co-simulation. To survey the current techniques, tools, and research challenges, we systematically classify recently published research literature on co-simulation, and summarize it into a taxonomy. As a result, we identify the need for finding generic approaches for modular, stable, and accurate coupling of simulation units, as well as expressing the adaptations required to ensure that the coupling is correct.

Funder

H2020

SSF

IWT

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference149 articles.

Cited by 256 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3