Toward Universal Spatialization Through Wikipedia-Based Semantic Enhancement

Author:

Sen Shilad1,Swoap Anja Beth1,Li Qisheng1,Dippenaar Ilse1,Ngo Monica1,Pujol Sarah1,Gold Rebecca1,Boatman Brooke1,Hecht Brent2,Jackson Bret1

Affiliation:

1. Macalester College, MN

2. Northwestern University, Evanston, IL

Abstract

This article introduces Cartograph, a visualization system that harnesses the vast world knowledge encoded within Wikipedia to create thematic maps of almost any data. Cartograph extends previous systems that visualize non-spatial data using geographic approaches. Although these systems required data with an existing semantic structure, Cartograph unlocks spatial visualization for a much larger variety of datasets by enhancing input datasets with semantic information extracted from Wikipedia. Cartograph’s map embeddings use neural networks trained on Wikipedia article content and user navigation behavior. Using these embeddings, the system can reveal connections between points that are unrelated in the original datasets but are related in meaning and therefore embedded close together on the map. We describe the design of the system and key challenges we encountered. We present findings from two user studies exploring design choices and use of the system.

Funder

Clare Boothe Luce Foundation

National Science Foundation

Wallace Scholarly Activities Grant from Macalester College

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference62 articles.

1. NFL TV Schedule and Maps;Week,2016

2. 2016. Home Page. Retrieved February 23 2019 from http://introjs.com/. 2016. Home Page. Retrieved February 23 2019 from http://introjs.com/.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wikipedia Reader Navigation;Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining;2022-02-11

2. Recommendation system based on semantic scholar mining and topic modeling on conference publications;Soft Computing;2020-11-03

3. The State of the Art in Map‐Like Visualization;Computer Graphics Forum;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3