Exploiting Constant Trace Property in Large-scale Polynomial Optimization

Author:

Mai Ngoc Hoang Anh1ORCID,Lasserre J. B.2ORCID,Magron Victor2ORCID,Wang Jie3ORCID

Affiliation:

1. Laboratory for Analysis and Architecture of Systems, Toulouse, France

2. Laboratory for Analysis and Architecture of Systems, Université de Toulouse, Toulouse, France

3. Academy of Mathematics and Systems Science, Beijing, China

Abstract

We prove that every semidefinite moment relaxation of a polynomial optimization problem (POP) with a ball constraint can be reformulated as a semidefinite program involving a matrix with constant trace property (CTP). As a result, such moment relaxations can be solved efficiently by first-order methods that exploit CTP, e.g., the conditional gradient-based augmented Lagrangian method. We also extend this CTP-exploiting framework to large-scale POPs with different sparsity structures. The efficiency and scalability of our framework are illustrated on some moment relaxations for various randomly generated POPs, especially second-order moment relaxations for quadratically constrained quadratic programs.

Funder

MESRI

FMJH Program PGMO

EDF, Thales, Orange et Criteo

Tremplin ERC Stg

European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions

French “Investing for the Future PIA3”

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference49 articles.

1. MOSEK ApS. 2019. The MOSEK Optimization Toolbox. Version 9.1. Retrieved from https://www.mosek.com/documentation.

2. Stephen Boyd, Neal Parikh, and Eric Chu. 2011. Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers. Now Publishers Inc.

3. Local Minima and Convergence in Low-Rank Semidefinite Programming

4. Optimization of Polynomials in Non-Commuting Variables

5. First-Order Methods for Nonconvex Quadratic Minimization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3