Affiliation:
1. Amirkabir University of Technology, Tehran, Iran
Abstract
Reversible logic has applications in various research areas, including signal processing, cryptography and quantum computation. In this article, direct NCT-based synthesis of a given
k
-cycle in a cycle-based synthesis scenario is examined. To this end, a set of seven building blocks is proposed that reveals the potential of direct synthesis of a given permutation to reduce both quantum cost and average runtime. To synthesize a given large cycle, we propose a decomposition algorithm to extract the suggested building blocks from the input specification. Then, a synthesis method is introduced that uses the building blocks and the decomposition algorithm. Finally, a hybrid synthesis framework is suggested that uses the proposed cycle-based synthesis method in conjunction with one of the recent NCT-based synthesis approaches which is based on Reed-Muller (RM) spectra.
The time complexity and the effectiveness of the proposed synthesis approach are analyzed in detail. Our analyses show that the proposed hybrid framework leads to a better quantum cost in the worst-case scenario compared to the previously presented methods. The proposed framework always converges and typically synthesizes a given specification very fast compared to the available synthesis algorithms. Besides, the quantum costs of benchmark functions are improved about 20% on average (55% in the best case).
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献