Reversible simulations of elastic collisions

Author:

Perumalla Kalyan S.1,Protopopescu Vladimir A.1

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

Consider a system of N identical hard spherical particles moving in a d -dimensional box and undergoing elastic, possibly multiparticle, collisions. We develop a new algorithm that recovers the precollision state from the post-collision state of the system, across a series of consecutive collisions, with essentially no memory overhead. The challenge in achieving reversibility for an n -particle collision (where, in general, n ≪ N ) arises from the presence of nd - d - 1 degrees of freedom (arbitrary angles) during each collision, as well as from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom (angles) during the forward simulation must be tracked. This requires memory proportional to the number of collisions, which grows very fast with N and d , thereby severely limiting the de facto applicability of the scheme. This limitation is addressed here by first performing a pseudorandomization of angles, which ensures determinism in the reverse path for any values of n and d . To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed which correctly samples the constrained phase space. Upon combining the pseudorandomization with correct phase space sampling, perfect reversibility of collisions is achieved, as illustrated for n ≤ 3, d = 2, and n = 2, d = 3. This result enables, for the first time, reversible simulations of elastic collisions with essentially zero memory accumulation. In principle, the approach presented here could be generalized to larger values of n . The reverse computation methodology presented here uncovers important issues of irreversibility in conventional models, and the difficulties encountered in arriving at a reversible model for one of the most basic and widely used physical system processes, namely, elastic collisions for hard spheres. Insights and solution methodologies, with regard to accurate phase space coverage with reversible random sampling proposed in this context, can help serve as models and/or starting points for other reversible simulations.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rollback Recovery in Session-Based Programming;Lecture Notes in Computer Science;2023

2. From Effects to Causes;Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation;2019-05-29

3. Efficient Simulation of Nested Hollow Sphere Intersections;Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation;2017-05-16

4. Supporting the integrated visual analysis of input parameters and simulation trajectories;Computers & Graphics;2014-04

5. Reverse computation for rollback-based fault tolerance in large parallel systems;Cluster Computing;2013-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3