Minority report in fraud detection

Author:

Phua Clifton1,Alahakoon Damminda1,Lee Vincent1

Affiliation:

1. Monash University, Clayton, Victoria, Australia

Abstract

This paper proposes an innovative fraud detection method, built upon existing fraud detection research and Minority Report , to deal with the data mining problem of skewed data distributions. This method uses backpropagation (BP), together with naive Bayesian (NB) and C4.5 algorithms, on data partitions derived from minority oversampling with replacement. Its originality lies in the use of a single meta-classifier (stacking) to choose the best base classifiers, and then combine these base classifiers' predictions (bagging) to improve cost savings (stacking-bagging). Results from a publicly available automobile insurance fraud detection data set demonstrate that stacking-bagging performs slightly better than the best performing bagged algorithm, C4.5, and its best classifier, C4.5 (2), in terms of cost savings. Stacking-bagging also outperforms the common technique used in industry (BP without both sampling and partitioning). Subsequently, this paper compares the new fraud detection method (meta-learning approach) against C4.5 trained using undersampling, oversampling, and SMOTEing without partitioning (sampling approach). Results show that, given a fixed decision threshold and cost matrix, the partitioning and multiple algorithms approach achieves marginally higher cost savings than varying the entire training data set with different class distributions. The most interesting find is confirming that the combination of classifiers to produce the best cost savings has its contributions from all three algorithms.

Publisher

Association for Computing Machinery (ACM)

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fraud risk assessment in car insurance using claims graph features in machine learning;Expert Systems with Applications;2024-10

2. A user guide of CART and random forests with applications in FinTech and InsurTech;Japanese Journal of Statistics and Data Science;2024-08-19

3. FCM-CSMOTE: Fuzzy C-Means Center-SMOTE;Expert Systems with Applications;2024-08

4. Outlier analysis for accelerating clinical discovery: An augmented intelligence framework and a systematic review;PLOS Digital Health;2024-05-22

5. Machine Learning-Based Real-Time Fraud Detection in Financial Transactions;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3