Optimizing N-dimensional, winograd-based convolution for manycore CPUs

Author:

Jia Zhen1,Zlateski Aleksandar2,Durand Fredo2,Li Kai1

Affiliation:

1. Princeton University

2. Massachusetts Institute of Technology

Abstract

Recent work on Winograd-based convolution allows for a great reduction of computational complexity, but existing implementations are limited to 2D data and a single kernel size of 3 by 3. They can achieve only slightly better, and often worse performance than better optimized, direct convolution implementations. We propose and implement an algorithm for N-dimensional Winograd-based convolution that allows arbitrary kernel sizes and is optimized for manycore CPUs. Our algorithm achieves high hardware utilization through a series of optimizations. Our experiments show that on modern ConvNets, our optimized implementation, is on average more than 3 x, and sometimes 8 x faster than other state-of-the-art CPU implementations on an Intel Xeon Phi manycore processors. Moreover, our implementation on the Xeon Phi achieves competitive performance for 2D ConvNets and superior performance for 3D ConvNets, compared with the best GPU implementations.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference58 articles.

1. 2016. FALCON Library: Fast Image Convolution in Neural Networks on Intel Architecture. "https://colfaxresearch.com/falcon-library/". (2016). 2016. FALCON Library: Fast Image Convolution in Neural Networks on Intel Architecture. "https://colfaxresearch.com/falcon-library/". (2016).

2. 2016. Intel(R) Math Kernel Library for Deep Neural Networks. "https://github.com/01org/mkl-dnn". (2016). 2016. Intel(R) Math Kernel Library for Deep Neural Networks. "https://github.com/01org/mkl-dnn". (2016).

3. 2018. N-Dimensional Winograd-based convolution framework. https://bitbucket.org/poozh/ond-winograd. (2018). 2018. N-Dimensional Winograd-based convolution framework. https://bitbucket.org/poozh/ond-winograd. (2018).

4. Accessed: 01-14-2018. C3D: Generic Features for Video Analysis. http://vlg.cs.dartmouth.edu/c3d/. (Accessed: 01-14-2018). Accessed: 01-14-2018. C3D: Generic Features for Video Analysis. http://vlg.cs.dartmouth.edu/c3d/. (Accessed: 01-14-2018).

5. Accessed: 01-14-2018. ILSVRC-2014 model (VGG team) with 16 weight layers. https://gist.github.com/ksimonyan/211839e770f7b538e2d8. (Accessed: 01-14-2018). Accessed: 01-14-2018. ILSVRC-2014 model (VGG team) with 16 weight layers. https://gist.github.com/ksimonyan/211839e770f7b538e2d8. (Accessed: 01-14-2018).

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IrGEMM: An Input-Aware Tuning Framework for Irregular GEMM on ARM and X86 CPUs;IEEE Transactions on Parallel and Distributed Systems;2024-09

2. Optimizing Full-Spectrum Matrix Multiplications on ARMv8 Multi-Core CPUs;IEEE Transactions on Parallel and Distributed Systems;2024-03

3. YFlows: Systematic Dataflow Exploration and Code Generation for Efficient Neural Network Inference using SIMD Architectures on CPUs;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

4. Fast Convolution Meets Low Precision: Exploring Efficient Quantized Winograd Convolution on Modern CPUs;ACM Transactions on Architecture and Code Optimization;2024-01-19

5. Design and Implementation of Deep Learning 2D Convolutions on Modern CPUs;IEEE Transactions on Parallel and Distributed Systems;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3