1. 2016. FALCON Library: Fast Image Convolution in Neural Networks on Intel Architecture. "https://colfaxresearch.com/falcon-library/". (2016). 2016. FALCON Library: Fast Image Convolution in Neural Networks on Intel Architecture. "https://colfaxresearch.com/falcon-library/". (2016).
2. 2016. Intel(R) Math Kernel Library for Deep Neural Networks. "https://github.com/01org/mkl-dnn". (2016). 2016. Intel(R) Math Kernel Library for Deep Neural Networks. "https://github.com/01org/mkl-dnn". (2016).
3. 2018. N-Dimensional Winograd-based convolution framework. https://bitbucket.org/poozh/ond-winograd. (2018). 2018. N-Dimensional Winograd-based convolution framework. https://bitbucket.org/poozh/ond-winograd. (2018).
4. Accessed: 01-14-2018. C3D: Generic Features for Video Analysis. http://vlg.cs.dartmouth.edu/c3d/. (Accessed: 01-14-2018). Accessed: 01-14-2018. C3D: Generic Features for Video Analysis. http://vlg.cs.dartmouth.edu/c3d/. (Accessed: 01-14-2018).
5. Accessed: 01-14-2018. ILSVRC-2014 model (VGG team) with 16 weight layers. https://gist.github.com/ksimonyan/211839e770f7b538e2d8. (Accessed: 01-14-2018). Accessed: 01-14-2018. ILSVRC-2014 model (VGG team) with 16 weight layers. https://gist.github.com/ksimonyan/211839e770f7b538e2d8. (Accessed: 01-14-2018).