Fast multi-level adaptation for interactive autonomous characters

Author:

Dinerstein Jonathan1,Egbert Parris K.1

Affiliation:

1. Brigham Young University, Provo, UT

Abstract

Adaptation (online learning) by autonomous virtual characters, due to interaction with a human user in a virtual environment, is a difficult and important problem in computer animation. In this article we present a novel multi-level technique for fast character adaptation. We specifically target environments where there is a cooperative or competitive relationship between the character and the human that interacts with that character.In our technique, a distinct learning method is applied to each layer of the character's behavioral or cognitive model. This allows us to efficiently leverage the character's observations and experiences in each layer. This also provides a convenient temporal distinction between what observations and experiences provide pertinent lessons for each layer. Thus the character can quickly and robustly learn how to better interact with any given unique human user, relying only on observations and natural performance feedback from the environment (no explicit feedback from the human). Our technique is designed to be general, and can be easily integrated into most existing behavioral animation systems. It is also fast and memory efficient.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Model to Incorporate Emotional Sensitivity into Human Computer Interactions;Proceedings of the 2014 workshop on Emotion Recognition in the Wild Challenge and Workshop - ERM4HCI '14;2014

2. MAS Controlled NPCs in 3D Virtual Learning Environment;2013 International Conference on Signal-Image Technology & Internet-Based Systems;2013-12

3. Animation Research: Modern Techniques;Modern Machine Learning Techniques and Their Applications in Cartoon Animation Research;2013-04-02

4. Character Behavior Planning and Visual Simulation in Virtual 3D Space;IEEE MultiMedia;2013-01

5. COGNITIVE AND BEHAVIORAL MODEL ENSEMBLES FOR AUTONOMOUS VIRTUAL CHARACTERS;Computational Intelligence;2010-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3