Context-Aware Semantic Annotation of Mobility Records

Author:

Wang Huandong1,Li Yong1,Lin Junjie2,Cao Hancheng3,Jin Depeng4

Affiliation:

1. Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing, China

2. University of California, San Diego

3. Department of Computer Science, Stanford University, CA

4. Beijing National Research Center for Information Science and Technology (BNRist),Department of Electronic Engineering, Tsinghua University, Beijing, China

Abstract

The wide adoption of mobile devices has provided us with a massive volume of human mobility records. However, a large portion of these records is unlabeled, i.e., only have GPS coordinates without semantic information (e.g., Point of Interest (POI)). To make those unlabeled records associate with more information for further applications, it is of great importance to annotate the original data with POIs information based on the external context. Nevertheless, semantic annotation of mobility records is challenging due to three aspects: the complex relationship among multiple domains of context, the sparsity of mobility records, and difficulties in balancing personal preference and crowd preference. To address these challenges, we propose CAP, a context-aware personalized semantic annotation model, where we use a Bayesian mixture model to model the complex relationship among five domains of context—location, time, POI category, personal preference, and crowd preference. We evaluate our model on two real-world datasets, and demonstrate that our proposed method significantly outperforms the state-of-the-art algorithms by over 11.8%.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Beijing Natural Science Foundation

Beijing National Research Center for Information Science and Technology

China Postdoctoral Science Foundation

Tsinghua University - Tencent Joint Laboratory for Internet Innovation Technology

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3