AI-empowered IoT Security for Smart Cities

Author:

Lv Zhihan1,Qiao Liang1,Kumar Singh Amit2,Wang Qingjun3

Affiliation:

1. School of Data Science and Software Engineering, Qingdao 266071, China

2. Department of Computer Science & Engineering, National Institute of Technology Patna, (An Institute under MHRD, Govt. of India), 800005 India

3. Shenyang Aerospace University, Shenyang 110136, China and Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Smart cities fully utilize the new generation of Internet of Things (IoT) technology in the process of urban informatization to optimize the urban management and service. However, in the IoT system, while information exchange and communication, wireless sensor network devices may not be able to resist all forms of attacks, which may lead to security issues such as user data disclosure. Aiming at the information security risks in smart city, the typical technologies in IoT is analyzed from the perspective of IoT perception layer and provides corresponding security solutions for the existing security threats. Regarding the communication security, the emerging wireless technology, long range (LoRa), is discussed, and the performance of wireless communication protocol is analyzed through simulation experiments, to verify that the IoT technology based on LoRa communication technology can improve the security of the system in the construction of smart city. The results show that REBEB, a new backoff algorithm, is similar to the binary exponential backoff algorithm in terms of throughput performance. REBEB focuses more on fairness, which is up to 0.985, and to a certain extent, its security is significantly improved. The fairness of REBEB algorithm is more than 0.4 in different nodes and competing windows, and the fairness of the system is better when the number of nodes is small. To sum up, the IoT system based on LoRa communication can effectively improve the security performance of the system in the construction of smart city and avoid the security threats in the IoT signal transmission.

Funder

National Natural Science Foundation of China

Key Research and Development Plan—Major Scientific and Technological Innovation Projects of ShanDong Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3