Affiliation:
1. East China Normal University, Shanghai, China
2. Stony Brook University, New York, United States
Abstract
To date, large-scale fluid simulation with more details employing the Smooth Particle Hydrodynamics (SPH) method or its variants is ubiquitous in computer graphics and digital entertainment applications. Higher accuracy and faster speed are two key criteria evaluating possible improvement of the underlying algorithms within any available framework. Such requirements give rise to high-fidelity simulation with more particles and higher particle density that will unavoidably increase computational cost significantly. In this paper, we develop a new general GPGPU acceleration framework for SPH-centric simulations founded upon a novel neighbor traversal algorithm. Our novel parallel framework integrates several advanced characteristics of GPGPU architecture (e.g., shared memory and register memory). Additionally, we have designed a reasonable task assignment strategy, which makes sure that all the threads from the same CTA belong to the same cell of the grid. With this organization, big bunches of continuous neighboring data can be loaded to the shared memory of a CTA and used by all its threads. Our method has thus low global-memory bandwidth consumption. We have integrated our method into both WCSPH and PCISPH, that are two improved variants in recent years, and demonstrated its performance with several scenarios involving multiple-fluid interaction, dam break, and elastic solid. Through comprehensive tests validated in practice, our work can exhibit up to 2.18x speedup when compared with other state-of-the-art parallel frameworks.
Publisher
Association for Computing Machinery (ACM)
Subject
General Arts and Humanities
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献