Thermal issues in disk drive design

Author:

Gurumurthi Sudhanva1,Sivasubramaniam Anand2

Affiliation:

1. University of Virginia, Charlottesville, VA

2. The Pennsylvania State University, University Park, PA

Abstract

The importance of pushing the performance envelope of disk drives continues to grow in the enterprise storage market. One of the most fundamental factors impacting disk drive design is heat dissipation, since it directly affects drive reliability. Until now, drive manufacturers have continued to meet the 40% annual growth target of the internal data-rates (IDR) by increasing RPMs and shrinking platter sizes, both of which have counteracting effects on the heat dissipation within a drive. In this article, we shall show that we are getting to a point where it is going to be very difficult to stay on this roadmap. We first present detailed models that capture the close relationships between capacity, performance, and thermal characteristics over time. Using these models, we quantify the drop-off in IDR growth rates over the next decade if we are to adhere to the thermal design envelope. We motivate the need for continued improvements in IDR by showing that the response times of real workloads can be improved by 30--60% with a 10K increase in the RPM for disks used in their respective storage systems. We then present two dynamic thermal management (DTM) techniques that can be used to buy back some of this IDR loss. The first DTM technique exploits the thermal slack between what the drive was intended to support and the currently lower operating temperature to ramp up the RPM. The second DTM technique assumes that the drive is only designed for average case operation and dynamically throttles its activities to remain within the thermal envelope.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Reference48 articles.

1. Ashar K. 1997. Magnetic Disk Drive Technology: Heads Media Channel Interfaces and Integration. IEEE Press. Ashar K. 1997. Magnetic Disk Drive Technology: Heads Media Channel Interfaces and Integration. IEEE Press.

2. Thermal stability of recorded information at high densities;Charrap S.;IEEE Trans. Magnetics,1997

3. Detection signal-to-noise ratio versus bit cell aspect ratio at high areal densities;Chen J.;IEEE Trans. Magnetics,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3